The Complexity of Unique k-SAT: An Isolation Lemma for k-CNFs

نویسندگان

  • Chris Calabro
  • Russell Impagliazzo
  • Valentine Kabanets
  • Ramamohan Paturi
چکیده

We provide some evidence that Unique k-SAT is as hard to solve as general k-SAT, where k-SAT denotes the satisfiability problem for k-CNFs with at most k literals in each clause and Unique k-SAT is the promise version where the given formula has 0 or 1 solutions. Namely, defining for each k > 1, sk = inf{δ > 0 | ∃ a O(2)-time randomized algorithm for k-SAT} and, similarly, σk = inf{δ > 0 | ∃ a O(2)-time randomized algorithm for Unique k-SAT}, we show that limk→∞ sk = limk→∞ σk. As a corollary, we prove that, if Unique 3-SAT can be solved in time 2 n for every > 0, then so can k-SAT for all k > 3. Our main technical result is an isolation lemma for k-CNFs, which shows that a given satisfiable kCNF can be efficiently probabilistically reduced to a uniquely satisfiable k-CNF, with non-trivial, albeit exponentially small, success probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Unique -SAT: An Isolation Lemma for -CNFs

We provide some evidence that Unique -SAT is as hard to solve as general -SAT, where -SAT denotes the satisfiability problem for -CNFs and Unique SAT is the promise version where the given formula has or solutions. Namely, defining for each , a -time randomized algorithm for -SAT and, similarly, a -time randomized algorithm for Unique -SAT , we show that . As a corollary, we prove that, if Uniq...

متن کامل

Unique k-SAT is as Hard as k-SAT

In this work we show that Unique k-SAT is as hard as k-SAT for every k ∈ N. This settles a conjecture by Calabro, Impagliazzo, Kabanets and Paturi [4]. To provide an affirmative answer to this conjecture, we develop a randomness optimal construction of Isolation Lemma for k-SAT.

متن کامل

On the Complexity of k-SAT

The k-SAT problem is to determine if a given k-CNF has a satisfying assignment. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k 3. Here exponential time means 2 for some $>0. In this paper, assuming that, for k 3, k-SAT requires exponential time complexity, we show that the complexity of k-SAT increases as k increases. More precisely, for k 3, de...

متن کامل

Exponential Complexity of Satisfiability Testing for Linear-Size Boolean Formulas

The exponential complexity of the satisfiability problem for a given class of Boolean circuits is defined to be the infimum of constants α such that the problem can be solved in time poly(m) 2, where m is the circuit size and n is the number of input variables [IP01]. We consider satisfiability of linear Boolean formula over the full binary basis and we show that the corresponding exponential c...

متن کامل

Random Θ(log n)-CNFs Are Hard for Cutting Planes

The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics and is a benchmark for satisfiability algorithms. We show that when k = Θ(log n), any Cutting Planes refutation for random k-SAT requires exponential size in the interesting regime where the number of clauses guarantees that the formula is unsatisfiable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003